
Exova Warringtonfire Holmesfield Road Warrington WA1 2DS United Kingdom T : +44 (0 1925 655116 F : +44 (0) 1925 655419 E : warrington@exova.com W: www.exova.com

BS EN 45545-2:2013+A1:2015 – Test Methods T10.01, T10.02, T10.04 & T11.01

Smoke and Toxicity Assessment

Test Method References "T10.01" / "T10.02"/ "T10.04" (ISO 5659-2: 2012; Plastics – Smoke Generation. Part 2 Determination of Optical Density by a Single Chamber Method) and "T11.01" (Gas Analysis in the Smoke Box EN ISO 5659-2, using FTIR Technique)

A Report To: PPG Italia

Document Reference: 396289

Date: 8th May 2018

Issue No.: 2

Page 1

Registered Office: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian EH28 8PL United Kingdom. Reg No.SC 70429

This report in issued in accordance with our terms and conditions, a copy of which is available on request.

Executive Summary

Objective To determine the toxic fume and optical density produced from the following product when tested in accordance with methods T10.01, T10.02, T10.04 and T11.01 as defined in BS EN 45545-2:2013+A1:2015 at an irradiance level of 50kW/m² without a pilot flame.

Generic Description	Product reference	luct reference Thickness V a s				
Coated glass reinforced phenolic	"PPG R50059/698/2"	4mm	4.47kg/m ^{2*}			
Individual components used to	manufacture composite:					
Coating	"Selemix Aqua 8-110/8-111"	30-40µ (Total 60-80µ)	1.9			
Substrate	Unable to provide	4mm	1.3g/cm ³			
*determined by Exova Warringtonfire						
Please see page 6 of this test report for the full description of the product tested						

Test Sponsor PPG Italia, Via Comasina 121, Milan, Italy

Summary of Test The average Ds(4) value determined was 62 Results:

The average VOF4 value determined was 108

The average Ds(max) value determined within 10 minutes was 108

The average Ds(max) value determined within 20 minutes was 108

The average CIT value at four minutes was 0.11

The average CIT value at eight minutes was 0.26

Date of Test 9th March, 22nd March and 23rd March 2018

Reason for
RevisionThis document replaces issue 1 (dated 3rd April 2018) of the same number which
has been withdrawn. The total film thickness was stated incorrectly in the issue 1
report. This has been amended in this issue 2 report.

Signatories

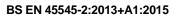
Responsible Officer T. Mort* Senior Technical Officer For and on behalf of **Exova Warringtonfire**.

Authorised S. Deeming * Business Unit Head

Report Issued: 8th May 2018

This version of the report has been produced from a .pdf format electronic file that has been provided by **Exova Warringtonfire** to the sponsor of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of **Exova Warringtonfire**.

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:



CONTENTSPAGE NO.EXECUTIVE SUMMARY2SIGNATORIES2TEST DETAILS4DESCRIPTION OF TEST SPECIMENS6TEST RESULTS7APPENDIX I9APPENDIX II11REVISION HISTORY12

Document No.: Author: Client: 396289 B. Dean PPG Italia

Page No.: Issue Date: Issue No.:

Test Details

Client:

PPG Italia

Introduction	Exova Warringtonfire was ca and toxicity test in accordance			
	2: 2013+A1:2015. This standa the apparatus and procedure provides equations which shou In addition to this the quantitat carried out in accordance with Method 1 (Smoke Chamber).	rd recommer s detailed in uld be calcula ive determina	ds that the test is carried ISO 5659-2: 2012. The ted in relation to the smol tion of the gases emitted	l out using e standard ke density. should be
	The test was performed in a 45545 and EN ISO 5659-2 ar these and other related standa	nd this report		
Test method	The principle of the test meth "T11.01" is to expose a materi combustion in a continuous pre	al to specified		
	The test was conducted in a Concept (operated with "Conc Analyser" supplied by Therr software).	ept" software), in combination with an	IGS FTIR
	Specimens were tested in th exposure to the heating arrang 50kW/m ² . The change in o dispersed within a fixed volum utilising the Concept software smoke density.	ement specifi ptical densit le of air is rec	ed in ISO 5659-2. The he y of the smoke produc corded throughout the per	at flux was ced when riod of test
	Quantitative determination of Transform Infra Red (FT-IR) a has been calibrated, the calibra (Thermo) using bottled gases using bottles gases and calibra	nalysis and t ation spectra and library s	he TQ Analyst software. were produced by the FT pectrum, plus Exova Wa	The FT-IR
	In all cases, the sample gases of the chamber with sample li sample losses.			
	The test method provides a products, however, it does not therefore be used to describe conditions.	model a real	fire situation and the resu	ults cannot
Fire test study group/EGOLF	Certain aspects of some f interpretations. The Fire Tes number of such areas and h agreement of interpretations b of the Groups. Where such F been followed.	t Study Gro ave agreed etween fire to	up and EGOLF have ic Resolutions which define est laboratories which are	entified a common members
Document No.:		Page No.:	4 of 12	
Author:	B. Dean	Issue Date:	8th May 2018	<u></u> [(≯≮) -

Issue No.:

2

0249

Instruction to test The test was conducted on the 9th March, 22nd March and 23rd March 2018 at the request of PPG Italia, the sponsor of the test.

Provision of test
specimensThe specimens were supplied by the sponsor of the test.ExovaWarringtonfire
was not involved in any selection or sampling procedure.

The coated face of the specimen was exposed to the heating conditions.

Condition of specimen edges Photograph of specimen

Test face

Coating applied to test face only, not applied to edges

Conditioning of specimens

The specimens were received on the 16th February 2018.

The specimens were conditioned at temperatures of $23 \pm 2^{\circ}$ C and a relative humidity of $50 \pm 5\%$ RH, for a minimum period of 24 hours prior to testing.

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

Description of Test Specimens

The description of the system given below has been prepared from information provided by the sponsor of the test. This information has not been independently verified by **Exova Warringtonfire**. All values quoted are nominal, unless tolerances are given.

General description	on	Coated glass reinforced phenolic	
Product reference		"PPG R50059/698/2"	
Overall thickness		4mm (stated by sponsor)	
		3.58mm (determined by Exova	
		Warringtonfire)	
Overall weight pe	r unit area	4.47kg/m ² (determined by Exova	
-		Warringtonfire)	
	Generic type	Waterborne 2-pack polyurethane coating	
	Product reference	"Selemix Aqua 8-110 / 8-111"	
	Name of manufacturer	PPG Industries	
	Colour reference	"Ral 7035"	
		"Grey" (observed by Exova Warringtonfire)	
Coating	Number of coats	2	
	Application thickness per coat	30-40µ (Total 60-80µ)	
	Specific gravity	1.9	
	Application method	Conventional high volume low spray	
	Curing process per coat	20 minutes air dry between coats at 20°C	
	Flame retardant details	See Note 1 Below	
		Glass reinforced phenolic	
	Generic type		
	Generic type	The sponsor was unable to provide specific	
Glass reinforced		details of the glass reinforcement and resin	
phenolic	Product reference	See Note 2 Below	
prienolic	Name of manufacturer	Pro Test Panels	
	Thickness	4mm	
	Density	1.3g/cm ³	
	Flame retardant details	See Note 1 Below	
Brief description of	of manufacturing process	See Note 2 Below	

Note 1: The sponsor of the test has confirmed that no flame retardants were used in the production of this component.

Note 2: The sponsor of the test was unable to provide this information.

Test Results

Applicability of test results relate only to the behaviour of the specimens of the product under the particular conditions of test; they are not intended to be the sole criterion for assessing the potential smoke and toxicity hazard of the product in use.

The test results relate only to the specimens of the product in the form in which they were tested. Small differences in the composition or thickness of the product may significantly affect the performance during the test and will therefore invalidate the test results. It is the responsibility of the supplier of the product to ensure that the product which is supplied is identical with the specimens which were tested.

Smoke Density Test method referenced "T10.01" requires the Ds(4) to be calculated. That is the specific optical density at 4 minutes test duration.

Test method referenced "T10.02" requires the VOF4 to be calculated. That is the area under the Ds vs. time curve during the period zero minutes to four minutes. This is calculated utilising the trapezium rule equation (assuming a finite element (t) of one minute):

$$VOF_4 = D_1 + D_2 + D_3 + \frac{D_4}{2}$$

Test method referenced "T10.04" requires the Ds(max) to be calculated. That is the maximum specific optical density within the first 10 minutes test duration.

The maximum specific optical density within the complete 20 minute test duration is also reported in case this is required by an alternative specification.

	Specimen 1	Specimen 2	Specimen 3	Mean Average
Ds(4)	62	55	69	62
VOF4	110	97	118	108
Ds(max) within 10 minutes	127	109	89	108
Ds(max) within 20 minutes	127	109	89	108

Toxic GasTest method referenced "T11.01" required the CIT to be calculated. That is the
conventional index of toxicity, a summation term from the analysis of gases
taken at four minutes and eight minutes test duration.

	Specimen 1	Specimen 2	Specimen 3	Mean Average
CIT (4 minutes)	0.11	0.10	0.13	0.11
CIT (8 minutes)	0.27	0.25	0.26	0.26

Additional Test Data

Additional test data relating to the smoke & toxicity performance of the product is detailed in Appendix I of this report.

A graph of the results obtained is illustrated in Appendix II.

Document No.: Author: Client:

396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

Summary of
resultsThe average Ds(4) value determined was 62The average VOF4 value determined was 108The average Ds(max) value determined within 10 minutes was 108The average Ds(max) value determined within 20 minutes was 108The average CIT value at four minutes was 0.11The average CIT value at eight minutes was 0.26ValidityThe specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may

ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

These results relate only to the behaviour of the specimens of the product under the particular conditions of test; they are not intended to be the sole criterion for assessing the potential smoke obscuration hazard of the product in use.

This report may only be reproduced in full. Extracts or abridgements shall not be published without permission of **Exova Warringtonfire**.

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

Appendix I

Gas Concentration At Four Minutes:

The concentration of each gas species for which analysis was conducted for at the four minute sampling point (expressed in ppm and kg/m³) is provided in the below table:

Speci	men 1	Specimen 2		Specimen 3		Mean Average	
ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m³
256	0.0003	227	0.0002	443	0.0004	309	0.0003
291	0.0005	282	0.0004	507	0.0008	360	0.0006
106	0.0002	92	0.0002	105	0.0002	101	0.0002
ND	ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND	ND
3	0.0000	2	0.0000	3	0.0000	2	0.0000
5	0.0000	5	0.0000	7	0.0000	6	0.0000
	ppm 256 291 106 ND ND ND 3 5	256 0.0003 291 0.0005 106 0.0002 ND ND ND ND ND ND 3 0.0000 5 0.0000	ppm kg/m³ ppm 256 0.0003 227 291 0.0005 282 106 0.0002 92 ND ND ND ND ND ND ND ND 227 3 0.0000 2	ppmkg/m³ppmkg/m³2560.00032270.00022910.00052820.00041060.0002920.0002NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND30.000020.000050.000050.0000	ppm kg/m³ ppm kg/m³ ppm 256 0.0003 227 0.0002 443 291 0.0005 282 0.0004 507 106 0.0002 92 0.0002 105 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 3 0.0000 2 0.0000 3 5 0.0000 5 0.0000 7	ppmkg/m³ppmkg/m³ppmkg/m³2560.00032270.00024430.00042910.00052820.00045070.00081060.0002920.00021050.0002NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND30.000020.000030.000050.000050.000070.0000	ppmkg/m³ppmkg/m³ppmkg/m³ppm2560.00032270.00024430.00043092910.00052820.00045070.00083601060.0002920.00021050.0002101ND30.000020.000030.0000250.000050.000070.00006

Where ND indicates None Detected

Gas Concentration At Eight Minutes:

The concentration of each gas species for which analysis was conducted for at the eight minute sampling point (expressed in ppm and kg/m³) is provided in the below table:

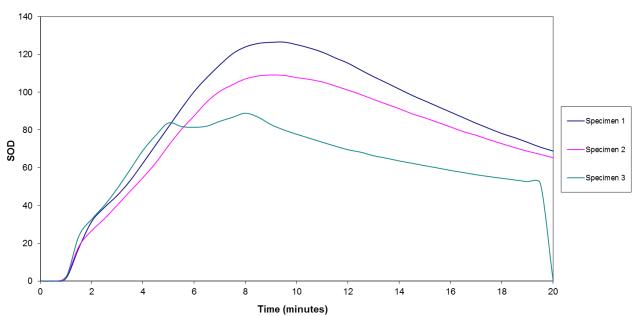
eampling peint	sampling point (expressed in ppin and kg/m) is provided in the below table.							
Gas	Specimen 1		Specimen 2		Specimen 3		Mean Average	
Gas	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m³
Carbon Monoxide	1100	0.0011	1091	0.0011	1410	0.0014	1200	0.0012
Carbon Dioxide	1353	0.0021	1372	0.0021	2055	0.0031	1593	0.0025
Sulphur Dioxide	227	0.0005	205	0.0005	198	0.0004	210	0.0005
Hydrogen Chloride	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen Bromide	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen Fluoride	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen cyanide	5	0.0000	4	0.0000	4	0.0000	4	0.0000
Nitrogen Oxides	13	0.0000	11	0.0000	10	0.0000	11	0.0000

Where ND indicates None Detected

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

	SP	Mean		
	1	2	3	
Clear Beam Correction Factor (D _c)	0	1	1	
Specific Optical Density at 10 minutes (D _s 10)	125	108	78	103
Specimen thickness	4.86	4.73	4.06	4.55
Initial specimen weight (g)	33.2	31.2	28.3	30.9
Final specimen weight (g)	20.71	17.67	16.78	18.39
Mass Loss (g)	12.5	13.5	11.5	12.5
Wire Grid (if applicable)	N/A	N/A	N/A	N/A
Neutral-density correction factor (C _f) (if applicable)	N/A	N/A	N/A	N/A
Test Duration (s)	1200	1200	1200	1200
Chamber back wall temperature	53	50	50	51
Test Operator		K. Sullivan		N/A

Observations:


	50kW/m ² In The Absence Of A Pilot Flame			
Specimen No.	1	2	3	
Colour of smoke produced	Light	Light	Light	
Expansion distance towards heater (mm)	N/A	N/A	N/A	
Ignition time in seconds (if applicable)	N/A	N/A	N/A	
Extinction time in seconds (if applicable)	N/A	N/A	N/A	
Unusual or unexpected behavior?	N/A	N/A	N/A	
Any difficulties during test?	N/A	N/A	N/A	
N/A = Not Applicable				

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

Appendix II

50kW/m² in the absence of a pilot flame

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

Revision History

Issue No : 2	Re - Issue Date: 8th May 2018
Revised By: T. Mort	Approved By: S. Deeming
Reason for Revision: This document replaces issue 1 (d	ated 3 rd April 2018) of the same number which has been

Reason for Revision: This document replaces issue 1 (dated 3° April 2018) of the same number which has been withdrawn. The total film thickness was stated incorrectly in the issue 1 report. This has been amended in this issue 2 report.

Issue No :	Re - Issue Date:
Revised By:	Approved By:
Reason for Revision:	

Document No.: Author: Client: 396289 B. Dean PPG Italia Page No.: Issue Date: Issue No.:

