Application areas: Boottop and underwater area of the outside hull of vessels

Contains the following specifications:

Specification 1: multi-purpose epoxy coating system
Specification 2: multi-purpose epoxy coating system
Specification 3: high solids reinforced epoxy coating system
Specification 4: high solids glassflake reinforced epoxy coating system
Specification 5: high solids epoxy mastic coating system
Specification 6: solvent free abrasion resistant epoxy coating system
Specification 7: chlorinated rubber coating system
Specification 8: coaltaer epoxy coating system

SURFACE PRE-TREATMENT

The quality of the surface pretreatment affects the performance of underwater and boottop systems, particularly when cathodic protection is applied. Optimal results will be obtained on substrates blast cleaned to ISO-Sa2½ which means that the shop primer should be removed. This is particularly important when (underfilm) corrosion has already started. Also the right blasting profile will be obtained.

ACCEPTANCE OF SHOP PRIMER

The quality and generic type of shop primer, will determine the performance of the coating system. The types of shop primer acceptable are those which are equivalent to SigmaWeld 165 and SigmaWeld 199 - zinc silicate and approved by PPG Protective & Marine Coatings.
In addition, any degradation or underfilm corrosion of the shop primer will limit the performance of the total system, unless correctly treated. These remarks are of particular importance when cathodic protection is installed.

The general condition of the weathered shop primer may vary widely throughout the structure and in many instances it is difficult to assess the severity of breakdown. Experience shows that in practice reblasting of corroded shop primed steel to ISO-Sa2½ is the most satisfactory method of correcting corrosion defects and eliminating the detrimental effect of surface contamination.

Approved shop primers in good condition should be cleaned to remove contamination and/or zinc salts. If necessary sweep blasting according to SPSS/Ss or mechanical cleaning according to SPSS-Pt3 should be carried out.
Special attention should be paid to heat damaged areas, including areas alongside weldseams and backburns.
SPECIFICATION 1

<table>
<thead>
<tr>
<th>multi-purpose epoxy system for UNDERWATER and BOOTTOP</th>
<th>with good resistance to mechanical impact, abrasion and well designed cathodic protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>pretreatment</td>
<td>steel; blast cleaned to ISO-Sa2½</td>
</tr>
<tr>
<td></td>
<td>steel with approved zinc silicate shop primer; sweep blasted to SPSS-Ss,</td>
</tr>
<tr>
<td></td>
<td>weld seams, burned and rusty areas; blast cleaned to ISO-Sa2½ or power tool cleaned</td>
</tr>
<tr>
<td>paint system</td>
<td>SigmaPrime 700 125 µm</td>
</tr>
<tr>
<td></td>
<td>SigmaCover 525 125 µm</td>
</tr>
<tr>
<td>notes</td>
<td>– SigmaCover 525 can be replaced by SigmaCover 555</td>
</tr>
<tr>
<td></td>
<td>– at temperatures below 5°C, SigmaPrime 700 can be replaced by</td>
</tr>
<tr>
<td></td>
<td>SigmaPrime 700 LT</td>
</tr>
<tr>
<td>maintenance</td>
<td>should preferably be carried out to this specification</td>
</tr>
</tbody>
</table>

SPECIFICATION 2

<table>
<thead>
<tr>
<th>multi-purpose epoxy system for UNDERWATER and BOOTTOP</th>
<th>with good resistance to mechanical impact, abrasion and well designed cathodic protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>pretreatment</td>
<td>steel; blast cleaned to ISO-Sa2½</td>
</tr>
<tr>
<td></td>
<td>steel with approved zinc silicate shop primer; sweep blasted to SPSS-Ss,</td>
</tr>
<tr>
<td></td>
<td>weld seams, burned and rusty areas; blast cleaned to ISO-Sa2½ or power tool cleaned</td>
</tr>
<tr>
<td>paint system</td>
<td>SigmaPrime 200 125 µm</td>
</tr>
<tr>
<td></td>
<td>SigmaCover 525 125 µm</td>
</tr>
<tr>
<td>notes</td>
<td>– SigmaCover 525 can be replaced by SigmaCover 555</td>
</tr>
<tr>
<td></td>
<td>– at temperatures below 5°C, SigmaPrime 200 can be replaced by</td>
</tr>
<tr>
<td></td>
<td>SigmaPrime 200 LT</td>
</tr>
<tr>
<td>maintenance</td>
<td>should preferably be carried out to this specification</td>
</tr>
</tbody>
</table>
SPECIFICATION 3

- **Description:** High solids reinforced epoxy system for UNDERWATER and BOOTTOP with excellent resistance to mechanical impact, abrasion and well designed cathodic protection.

- **Pretreatment:**
 - Steel: blast cleaned to ISO-Sa2½
 - Steel with approved zinc silicate shop primer: sweep blasted to SPSS-Ss, weld seams, burned and rusty areas: blast cleaned to ISO-Sa2½ or power tool cleaned to SPSS-Pt3

- **Paint System:**
 - SigmaShield 220 125 µm
 - SigmaShield 420 125 µm
 - SigmaCover 525 75 µm

- **Antifouling:** As specified

- **Notes:**
 - SigmaShield 220 can be replaced by SigmaPrime 200 or 700
 - SigmaCover 525 can be replaced by SigmaCover 555
 - At temperatures below 5°C, SigmaPrime 200 or 700, SigmaShield 220 and SigmaShield 420 can be replaced by the LT versions

- **Maintenance:** Should preferably be carried out to this specification

SPECIFICATION 4

- **Description:** High solids, glassflake reinforced epoxy system on top of in situ applied epoxy primer for UNDERWATER and BOOTTOP with good resistance to heavy impact (fender areas - ice going vessels) and well designed cathodic protection.

- **Pretreatment:** Steel; blast cleaned to ISO-Sa2½, blasting profile (Rz) 50 - 100 µm

- **Paint System:**
 - SigmaShield 220 100 µm
 - SigmaShield 460 400 µm
 - SigmaCover 525 75 µm

- **Antifouling:** As specified

- **Notes:**
 - If a holding primer is required, SigmaShield 220 can be replaced by SigmaCover 280 at a dft of 50 µm
 - SigmaCover 525 can be replaced by SigmaCover 555
 - At temperatures below 5°C, SigmaShield 220 and SigmaShield 460 can be replaced by the LT versions

- **Maintenance:** Should preferably be carried out to this specification
SPECIFICATION 5

- **high solids, epoxy mastic coating system for maintenance of UNDERWATER and BOOTTOP with good resistance to mechanical impact and well designed cathodic protection**

pretreatment
- steel; blast cleaned to ISO-Sa2½, blasting profile (Rz) 40 - 70 µm
- steel with approved zinc silicate shop primer; sweep blasted to SPSS-Ss, or power tool cleaned to SPSS-Pt3

paint system
- SigmaCover 380 125 µm
- SigmaCover 525 125 µm

notes
- SigmaCover 380 can be replaced by SigmaCover 630 aluminium
- at temperatures below 5°C, SigmaCover 380 can be replaced by the LT version

maintenance
- should preferably be carried according to this specification

pretreatment in case of hydrojetted to VIS WJ2 L or ISO Wa 2½ L
- SigmaCover 280 should be applied as first coat at a dft of 50 µm (for more info see information sheet 1498)

SPECIFICATION 6

- **solvent free, abrasion resistant epoxy system for UNDERWATER and BOOTTOP with excellent resistance to mechanical impact (e.g. for ice going and ice breaking vessels) and well designed cathodic protection**

pretreatment
- steel; blast cleaned to ISO-Sa2½, blasting profile (Rz) 50 - 100 µm

paint system
- SigmaShield 1200 400 µm
- SigmaCover 525 75 µm
- antifouling as specified

notes
- SigmaCover 525 can be replaced by SigmaCover 555
- at temperatures below 5°C, SigmaShield 1200 can be replaced by SigmaShield 1200 LT

maintenance
- should preferably be carried out to this specification
SPECIFICATION 7

chlorinated rubber system for UNDERWATER and BOOTTOP with good resistance to well designed cathodic protection

pretreatment
- steel; blast cleaned to ISO-Sa2½
- steel with approved zinc silicate shop primer; sweep blasted to SPSS-Ss, weld seams, burned and rusty areas; blast cleaned to ISO-Sa2½ or power tool cleaned to SPSS-Pt3

paint system
- Sigma Vikote 18 light
- Sigma Vikote 18 dark
- Sigma Vikote 18 light

antifouling as specified

note
For touch up areas 2 coats of Sigma Vikote 18 at a dft of 100 µm each can be specified

maintenance
Should preferably be carried out to this specification

SPECIFICATION 8

coal tar epoxy system for UNDERWATER and BOOTTOP with good resistance to mechanical impact, abrasion and well designed cathodic protection

pretreatment
- steel: blast cleaned to ISO-Sa2½
- steel with approved zinc silicate shop primer:
 - sweep blasted to SPSS-Ss
- weld seams, burned and rusty areas: blast cleaned to ISO-Sa2½ or power tool cleaned to SPSS-Pt3
- if a holding primer is required, SigmaCover 280 can be used (dft of 50 µm)

paint system
- SigmaCover 300 brown
- SigmaCover 510

antifouling as specified

note
At temperatures below 5°C, SigmaCover 300 can be replaced by SigmaCover 300 brown LT

maintenance
Should preferably be carried out to this specification

pretreatment
In case of hydrojetted to VIS WJ2 L or ISO Wa 2½ L SigmaCover 280 should be applied as first coat at a dft of 50 µm (for more info see sheet 1498)
MAINTENANCE

As in normal dry-docking practice, fouling, loose paint and other contaminants should be removed by high pressure water cleaning (HPWC). Any fouling and/or loose paint remaining after HPWC must be removed by scraping or sweep blasting. The removal of an oil or grease belt can be achieved by scraping heavy deposits from the surface followed by HPWC in combination with the use of suitable detergents. This should be followed by a thorough fresh water wash and drying prior to blasting and/or repainting. It might, however, be necessary to blast clean such areas after this operation when oil has penetrated the underlying paint systems. Rusty spots should be pretreated by blast cleaning and touched up with the original anticorrosive system within the requirements given in the relevant specifications.

CATHODIC PROTECTION

Sacrificial zinc anodes produce potential differences related to the Ag/AgCl reference electrode of approx. minus 1050 mV. As the resistance of bituminous aluminium coatings and chlorinated rubber coatings lie in the region of this figure it is therefore recommended to apply a protective shield around the anodes when a vessel with such a coating system is fitted with anodes. For this purpose it is recommended to blast the related area to ISO-Sa2½ followed by 1 coat of 75 µm of SigmaCover 280 and 2 coats of 300 µm each of SigmaShield 460 as a protective shield.
REFERENCES

Sigma Vikote 18 see product data sheet 7318
SigmaCover 280 see product data sheet 7417
SigmaCover 300 see product data sheet 7472
SigmaCover 300 LT see product data sheet 7483
SigmaCover 380 see product data sheet 7979
SigmaCover 380 LT see product data sheet 7980
SigmaCover 510 see product data sheet 7479
SigmaCover 525 see product data sheet 7902
SigmaCover 555 see product data sheet 7905
SigmaCover 630 aluminium see product data sheet 7431
SigmaPrime 200 see product data sheet 7416
SigmaPrime 200 LT see product data sheet 7931
SigmaPrime 700 see product data sheet 7930
SigmaPrime 700 LT see product data sheet 7946
SigmaShield 220 see product data sheet 7922
SigmaShield 220 LT see product data sheet 7926
SigmaShield 420 see product data sheet 7951
SigmaShield 420 LT see product data sheet 7955
SigmaShield 460 see product data sheet 7952
SigmaShield 460 LT see product data sheet 7972
SigmaShield 1200 see product data sheet 7444
SigmaShield 1200 LT see product data sheet 7746
SigmaWeld 165 see product data sheet 7171
SigmaWeld 199 see product data sheet 7177
Cleaning of steel and removal of rust see information sheet 1490
Hydrojetting see information sheet 1498
Prefabrication primers see system sheet 3015

Limitation of Liability - The information in this data sheet is based upon laboratory tests we believe to be accurate and is intended for guidance only. All recommendations or suggestions relating to the use of the Sigma Coatings products made by PPG Protective & Marine Coatings, whether in technical documentation, or in response to a specific enquiry, or otherwise, are based on data which to the best of our knowledge are reliable. The products and information are designed for users having the requisite knowledge and industrial skills and it is the end-user’s responsibility to determine the suitability of the product for its intended use.

PPG Protective & Marine Coatings has no control over either the quality or condition of the substrate, or the many factors affecting the use and application of the product. PPG Protective & Marine Coatings does therefore not accept any liability arising from loss, injury or damage resulting from such use or the contents of this data sheet (unless there are written agreements stating otherwise).

The data contained herein are liable to modification as a result of practical experience and continuous product development. This data sheet replaces and annuls all previous issues and it is therefore the user’s responsibility to ensure that this sheet is current prior to using the product.