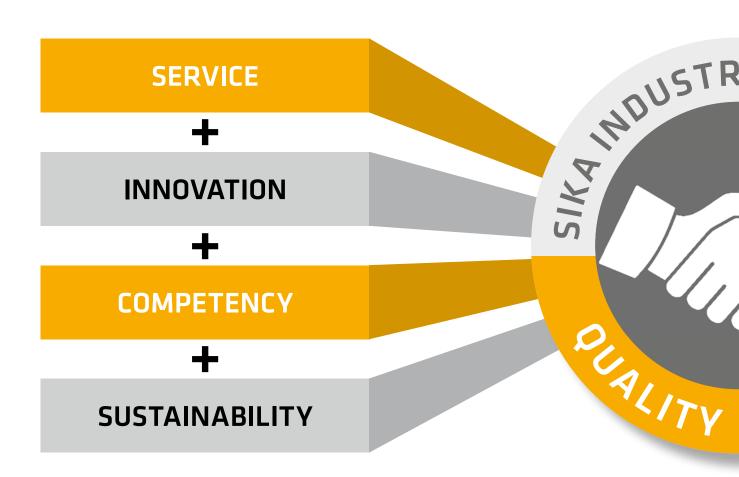


CORROSION PROTECTIVE COATINGS FOR STEEL STRUCTURES

PRACTICAL COATING SYSTEMS FOR ALL IMPORTANT APPLICATIONS ACCORDING TO ISO 12944:2018


CONTENT

02	Introduction
03	Content
04	The Sika quality promise
07	More safety through efficient products and professional consulting
08	Perfect results due to innovative and proved coating systems
10	Protection over decades – Implementations of ISO 12944-5:2018
12	TABLE 1a: Selection of coating systems on steel for atmospheric conditions up to C3
14	TABLE 1b: Selection of steel coating systems for atmospheric conditions up to C5
16	TABLE 2: Selection of coating systems on hot-dip galvanized steel
18	TABLE 3: Selection of coating systems for refurbishment of old coatings
20	TABLE 4: Product features of our primers
22	TABLE 5: Product features of our intermediate coats
24	TABLE 6: Product features of our top coats
26	Our competence

THE SIKA QUALITY PROMISE

THANKS TO ADVANCED technologies, special service and many years of experiences, Sika Induastrial Coatings is a reliable partner for corrosion protective coatings in steel constructions for many decades. Thanks to the most advanced technologies, special service and many years of experience. From the competent sales team to the specialists in product management and the development department to the production team, our experts contribute to Sika Industrial Coatings' promise of quality.

THE SIKA QUALITY PROMISE

OUR SERVICE - YOUR BENEFIT

IALCORINGS

PROMIS

PROFESSIONAL CONSULTING

for the choice of the optimal Sika coating system

ON SITE INSTRUCTIONS

during coating work on request

SURFACE INSPECTION TEST

within the monitoring of reference areas

Consulting and sale by our experts, certified as

FROSIO COATING INSPECTORS
LEVEL III

MORE SAFETY THROUGH EFFICIENT PRODUCTS AND PROFESSIONAL CONSULTING

WITHOUT LONG-LASTING AND FUNCTIONAL corrosion protection, many steel structures start to "look quite old" after only a few years. But it is not only the appearance that is affected – the strength of the structure can also start to suffer. In the worst case, the only choice is between decommissioning the structure or a full refurbishment. That's why you can rely on our coating systems to maintain their value, durability and aesthetics right from the start.

Since 1998, the corrosion protection of steel structures has been regulated by the international standard ISO 12944.

In 2018, the entire standard was adapted to the state of the art with constantly increasing requirements and findings with regard to corrosion protection coatings. In its nine parts, this standard illuminates the following aspects in detail:

- Basics and environmental influences
- Surface evaluation and preparation
- Conception of initial protection and refurbishment
- Laboratory testing of coating systems
- Execution and supervision of works

Our high-performance products and systems cover the entire spectrum of the defined requirements.

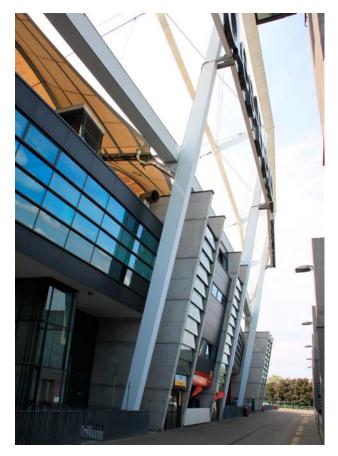
This brochure is focussed on steel structures with the most important passages of the revised standard. In particular, we present the coating systems acc. part 5 of the revised standard.

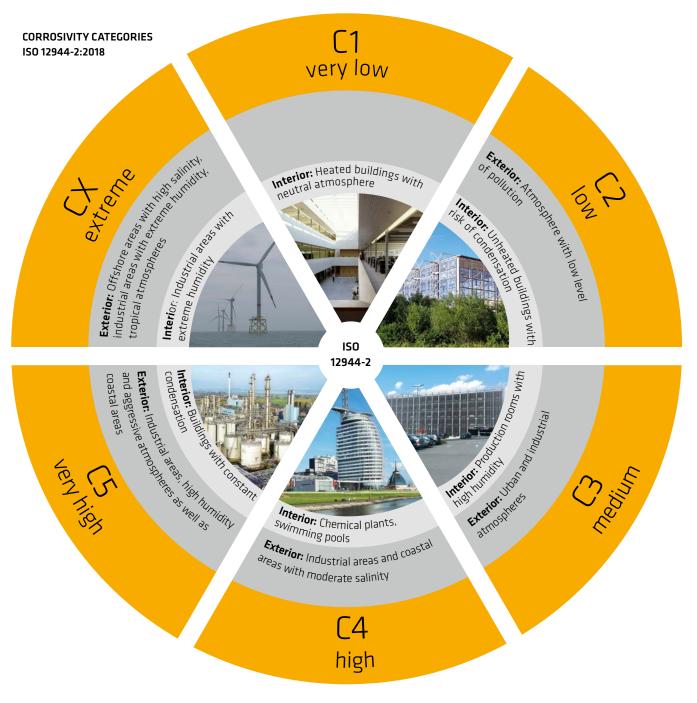
Further information on Sika's competence in the field of corrosion and fire protection coatings can be found on page 27.

The selection of the optimal coating system in terms of technical and economic aspects is not easy. For this reason, we have presented our suggestions and products in clear tables.

We hope that our practice-oriented information will also become a welcome aid for you and make it easier for you to choose the right corrosion protection system. If you have any questions, we will be happy to advise you personally.

TABLE	
1	Coating systems on steel surfaces
2	Coatings on hot-dip galvanised steel
3	Refurbishment of old coating
4	Product features of our primers
5	Product features of our intermediate coats
6	Product features of our top coats


PERFECT RESULTS DUE TO INNOVATIVE AND PROVED COATING SYSTEMS


CORROSION PROTECTIVE COATINGS of steel structures are exposed to specific corrosion loads depending on the ambient conditions. These are defined in ISO 12944-1,-2:2018 depending on durability range and corrosivity category.

Based on many years of experience, it is now possible to provide coating systems for steel with durabilities of more than 25 years in almost all atmospheric load ranges. As a result, it has now been possible to increase the durability range to more than 25 years.

PROTECTIVE PERIODS - ISO 12944-1:2018

Durability range	Abbreviation (s)	Period of time
low	L	up to 7 years
medium	М	7 - 15 years
high	н	15 - 25 years
very high	VH	more than 25 years

In the 2018 revised standard, the corrosivity categories were restructured and now range from C1 to CX. CX describes extreme conditions related to marine climate or tropical atmosphere and is treat within the new part 9 of the standard.

PROTECTION OVER DECADES -FUNDAMENTAL IMPLEMENTATIONS OF ISO 12944-5:2018

IN ORDER TO OFFER a safe protection against corrosion, the diffusion barrier through coatings plays a essential role. For this reason, the previously freely selectable system dimension was redefined during the revision of the standard. With the revised standard, the proposed coating systems are no longer informative, now they are normative.

WHAT HAS CHANGED REGARDING TO...

...THE NUMBER OF COATS?

■ The minimum number of coats (MNOC) and the total film thickness (NDFT = **N**ominal **d**ry **f**ilm **t**hickness) of the individual systems are obligatory. Higher film thicknesses and more working steps are possible.

...THE STEEL SUBSTRATE?

- The new requirements for coating systems differ in applications on steel (Sa 2 ½) and on hot-dip galvanized steel.
- According to the revised standard, metallic zinc layers are a part of the corrosion protection system and no longer part of the substrate.

...THE SYSTEM BUILDUP?*

- The coating system varies according to the desired corrosivity category and durability range.
- From C2 very high it is also possible to adopt coating systems from higher or lower categories. Only the durability range varies according to the corrosivity category.
- From C2 low to C2 high it is possible to use C3 coating systems, but not on reverse. This means that a coating system which is highly suitable for C2 is not necessarily suitable for C3 medium despite identical coating thicknesses. This is due to different corrosion resistance requirements in the two corrosivity categories.

^{*}The requirements based on the revised standard are shown in the table on page 11.

MINIMUM REQUIREMENTS FOR COATING SYSTEMS ON BLASTED OR HOT-DIP GALVANIZED STEEL SUBSTRATES IN ACCORDANCE WITH ISO 12944-5:2018

Co	oating system					Corrosivity categories							
			С	2	С	3	С	4	С	5			
Type of primer	Type of the following layer	Dura- bility range	Number of coats	Total coating thick- ness [µm]									
Blasted stee	l substrate	C2 C3 C4 Total coating thick-ness [µm] Number of coats Number of coats											
		L	-	-	-	-	1	60	2	160			
Zinc Rich Primer	ED DUD AV	М	-	-	1	60	2	160	2	200			
(ESI, EP, PUR)	EP, PUR, AY	н	1	60	2	160	2	200	3	260			
		VH	2	160	2	200	3	260	3	320			
		L	-	-	-	=	1	120	2	180			
ESI, EP,	EP, PUR, AY	М	-	-	1	120	2	180	2	240			
PUR		Н	1	120	2	180	2	240	2	300			
		VH	2	180	2	240	2	300	3	360			
	AV. AV.	L	-	-	1	100	1	160	-	-			
A1/ A\/		М	1	100	1	160	2	200	-	-			
AK, AY	AK, AY	н	1	160	2	200	2	260	-	-			
		VH	2	200	2	260	-	-	-	-			
Hot-dip galv	vanized steel												
		L	-	-	-	-	1	60	2	160			
ED DUD	EP, PUR,	М	-	-	1	60	2	160	2	200			
EP, PUR	AY	н	1	60	2	160	2	200	3	260			
		VH	2	160	2	200	3	260	3	320			
		L	-	-	-	-	1	160	-	-			
AV	Av.	М	-	-	1	160	2	200	-	-			
AY	AY	Н	1	160	2	200	2	260	-	-			
	[VH	2	200	2	260	-	-	-	-			

11

TABLE 1a SELECTION OF COATING SYSTEMS ON STEEL FOR ATMOSPHERIC CONDITIONS UP TO C3

COATING SYSTEMS FOR CORROSION PROTECTION OF STEEL STRUCTURES IN VARIOUS ATMOSPHERIC CONDITIONS ACCORDING TO ISO 12944-5:2018. SURFACE PREPARATION: SA 2½ (ISO 12944-4:2018)

Primer		Top coat		Total s	ystem
Product name	NDFT [µm]	Product name	NDFT [µm]	Number of coats	NDFT [µm]
		SikaCor® PUR Color NEW*3	120	1	120
Sika® CorroTop NEW	80	Sika® CorroTop NEW	80	2	160
SikaCor® Steel Protect VHS Rapid	80	Sika® CorroTop NEW	80	2	160
SikaCor® Aktivprimer Rapid	80	Sika® CorroTop NEW	80	2	160
		SikaCor® EP Color	100	1	100
		SikaCor® Steel Protect VHS Rapid	120	1	120
SikaCor® Steel Protect VHS Rapid	120	SikaCor® Steel Protect VHS Rapid	80	2	200
		SikaCor® PUR Color NEW*³	180	1	180
SikaCor® ZP Primer	100	SikaCor® PUR Color NEW*³	80	2	180
SikaCor® Steel Protect VHS Rapid	80	SikaCor®-6630 High Solid* ⁶	120	2	200
SikaCor®-6630 High Solid*6	100	SikaCor®-6630 High Solid* ⁶	100	2	200
SikaCor® EP Color	100	SikaCor® EP Color	80	2	180
SikaCor® EP Color	100	SikaCor® PUR Color NEW*³	80	2	180
Sika Poxicolor® Primer HE NEW	100	SikaCor® EG-5*5	80	2	180

^{*}¹alternatively SikaCor® EG Phosphat Rapid/Plus *²alternatively SikaCor® EG-1 Rapid/Plus *³alternatively SikaCor® PUR Color Plus *⁴alternatively SikaCor® Zinc R Rapid *⁵alternatively SikaCor® EG-4, Sika® Permacor®-2330 oder Sika® Permacor®-2230 VHS *⁵alternatively SikaCor®-6630 Plus *³alternatively SikaCor® C6630 Plu

		Co	orrosivit	y catego	ry		
	С	2			C	3	
low	medium	high	very high	wol	medium	high	very high

TABLE 1b SELECTION OF COATING SYSTEMS ON STEEL FOR ATMOSPHERIC CONDITIONS UP TO C5

COATING SYSTEMS FOR CORROSION PROTECTION OF STEEL STRUCTURES IN VARIOUS ATMOSPHERIC CONDITIONS ACCORDING TO ISO 12944-5:2018. SURFACE PREPARATION: SA 2½ (ISO 12944-4:2018)

Primer		Intermediate coat		Top coat	
Product name	NDFT [µm]	Product name	NDFT [µm]	Product name	NDFT [µm]
SikaCor®-6630 High Solid*6	80	SikaCor®-6630 High Solid*6	100	SikaCor®-6630 High Solid*6	100
Sika® Permacor®-2204 VHS	160			SikaCor® EG-5*5	80
Sika Poxicolor® Rapid	120			SikaCor® EG-120	120
SikaCor®-2440 MF	190			SikaCor® EG-5*5	50
Sika® Permacor®-2204 VHS	220			SikaCor® EG-5*5	80
SikaCor® EG Phosphat*1	100	SikaCor® EG-1*²	120	SikaCor® EG-5*5	80
SikaCor® ZP Primer	100	SikaCor® ZP-1	120	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	80	SikaCor® EG-1*²	100	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	80	SikaCor® ZP-1	100	SikaCor® EG-5*5	80
Sika Poxicolor® Primer HE NEW	100	SikaCor® EG-1 VHS	120	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	80	SikaCor® EG-1 VHS	100	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	60	SikaCor®-2440 MF	120	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	80	Sika Poxicolor®	120	Sika Poxicolor®	120
Sika® Permacor®-2311 Rapid	80	Sika® Permacor®-2215 EG VHS	160	Sika® Permacor®-2230 VHS	80
SikaCor® Zinc R*4	80	SikaCor® EG-1 VHS	160	SikaCor® EG-5*5	80
SikaCor® Zinc R*4	80	SikaCor® EG-1*²	2 x 80	SikaCor® EG-5*5	80
Sika® Permacor®-2204 VHS	140	Sika® Permacor®-2204 VHS	140	SikaCor® EG-5*5	80

^{*}lalternatively SikaCor® EG Phosphat Rapid/Plus *²alternatively SikaCor® EG-1 Rapid/Plus *³alternatively SikaCor® PUR Color Plus *⁴alternatively SikaCor®Zinc R Rapid *⁵alternatively SikaCor® EG-4, Sika® Permacor®-2330 oder Sika® Permacor®-2230 VHS *⁵alternatively SikaCor®-6630 Plus *³alternatively SikaCor®-6630 Primer Plus

Total s	system							Co	orrosivit	y catego	ry						
			C	2			С	3			С	4			С	5	
Number of coats	NDFT [µm]	wol	medium	high	very high	low	medium	high	very high	wol	medium	high	very high	wol	medium	high	very high
	280																
2	240																
2	240																
2	240																
2	300																
3	300																
3	300																
3	260																
3	260																
3	300																
3	260																
3	260																
3	320																
3	320																
3	320																
4	320																
3	360																
							,										

TABLE 2 SELECTION OF COATING SYSTEMS ON HOT-DIP GALVANIZED STEEL

DUPLEX SYSTEMS FOR CORROSION PROTECTION OF STEEL STRUCTURES IN VARIOUS ATMOSPHERIC CONDITIONS ACCORDING TO ISO 12944-5:2018. SURFACE PREPARATION: HOT-DIP GALVANIZED ACCORDING TO ISO 1461 / ISO 14713

Primer		Intermed	iate coat	Top coat	
Product name	NDFT [µm]	Product name	NDFT [µm]	Product name	NDFT [µm]
SikaCor® EG-1*²	80				
SikaCor®-6630 High Solid*6	80			SikaCor®-6630 High Solid*6	80
SikaCor® EG-1 VHS	120				
				SikaCor® EG-120	120
SikaCor®-6630 High Solid*6	100			SikaCor®-6630 High Solid*6	100
SikaCor® EG-1*²	80			SikaCor® EG-5*5	80
Sika Poxicolor® Rapid	100			SikaCor® EG-120	100
SikaCor® EG-1*²	120			SikaCor® EG-5*5	80
SikaCor® EG-1 VHS	140			SikaCor® EG-5*5	60
Sika Poxicolor®	120			Sika Poxicolor®	120
Sika Poxicolor® Rapid	120			SikaCor® EG-120	120
SikaCor® EG-1 VHS	160			SikaCor® EG-5*5	80
SikaCor® EG-1*²	80	SikaCor® EG-1*²	80	SikaCor® EG-5*5	80

*¹alternatively SikaCor® EG Phosphat Rapid/Plus *²alternatively SikaCor® EG-1 Rapid/Plus *³alternatively SikaCor® PUR Color Plus *⁴alternatively SikaCor® Zinc R Rapid *⁵alternatively SikaCor® EG-4, Sika® Permacor®-2330 oder Sika® Permacor®-2230 VHS *⁵alternatively SikaCor®-6630 Plus *³alternatively SikaCor®-6630 Plus *³alternatively SikaCor®-6630 Plus *

Total s	system							Co	orrosivit	y catego	ry						
			С	2		С3				C4					С	5	
Number of coats	NDFT [µm]	low	medium	high	very high	low	medium	high	very high	low	medium	high	very high	wol	medium	high	very high
1	80																
2	160																
1	120																
1	120																
2	200																
2	160																
2	200																
2	200																
2	200																
2	240																
2	240																
2	240																
3	240																

TABLE 3 SELECTION OF COATING SYSTEMS FOR REFURBISHMENT OF OLD COATINGS

COATING SYSTEMS FOR CORROSION PROTECTION OF STEEL STRUCTURES IN VARIOUS ATMOSPHERIC CONDITIONS ACCORDING TO ISO 12944-5:2018.

	Primer		Intermediate coat		Top coat	
Partial surface preparation	Product name	NDFT [µm]	Product name	NDFT [µm]	Product name	NDFT [µm]
P St 2/P St 3	SikaCor® Aktivprimer Rapid	80	SikaCor®-6630 High Solid*6	80	SikaCor®-6630 High Solid*6	80
P St 2/P St 3	SikaCor®-6630 Primer* ⁷	80	SikaCor®-6630 High Solid*6	80	SikaCor®-6630 High Solid*6	80
P St 2/P St 3	Sika Poxicolor® Primer HE NEW	120			SikaCor® EG-120	120
P St 2/P St 3	Sika Poxicolor® Primer HE NEW	80	SikaCor® EG-1 VHS	80	SikaCor® EG-4 oder EG-5	80
P Ma	Sika Poxicolor® Primer HE NEW	120			Sika Poxicolor®	120
P Ma	Sika Poxicolor® Primer HE NEW	100	SikaCor® EG-1 VHS	100		
P Ma	Sika Poxicolor® Primer HE NEW	100			SikaCor® EG-4 oder EG-5	80
P Sa 2½	SikaCor® EG Phosphat*1	100	SikaCor® EG-1*²	120		
P Sa 2½	SikaCor® EG Phosphat*1	100			SikaCor® EG-4 oder EG-5	80

^{*}¹alternatively SikaCor® EG Phosphat Rapid/Plus *²alternatively SikaCor® EG-1 Rapid/Plus *³alternatively SikaCor® PUR Color Plus *⁴alternatively SikaCor® Zinc R Rapid *⁵alternatively SikaCor® EG-4, Sika® Permacor®-2330 oder Sika® Permacor®-2230 VHS *⁵alternatively SikaCor®-6630 Plus *³alternatively SikaCor® EG-4, Sika® Permacor®-6630 Primer Plus

Total sys	tem							Co	orrosivit	y catego	ry						
			С	2			С	3			C	4			C	5	
Number of coats	NDFT [µm]	low	medium	hgih	very high	low	medium	high	very high	low	medium	high	very high	low	medium	high	very high
3	240																
3	240																
2	240																
3	240																
2	240																
2	200																
2	180																
2	220																
2	180																

TABLE 4

PRODUCT FEATURES OF OUR PRIMERS

Primer	Density		ume lids	Dry film thick- ness	Theor. mat. con- sumption	Min. application tempera- ture	Waiting time until over- coating ¹⁾	
rilliei	[kg/l]	Vol. [%]	Wt [%]	[µm]	[kg/m²]		at 10°C	at 20°C
SikaCor®-2440 MF 2-pack micaceous iron oxid free, low VOC epoxy primer and intermediate coat	1.45	67	81	80-160	0.173 - 0.346	+ 5°C	10 h	4.5 h
SikaCor®-6630 Primer 1-pack oxidative drying primer for manually de-rusted surfaces and well adhering old coatings systems	1.5	62	79	80	0.195	+ 5°C	48 h	24 h
SikaCor®-6630 Primer Plus 1-pack oxidative drying primer for manually de-rusted surfaces and well adhering old coatings systems acc. to TL/TP-KOR-Stahlbauten, Blatt 93	1.4	66	80	80	0.168	+ 5°C	48 h	24 h
SikaCor® Aktivprimer Rapid 1-pack primer for manually de-rusted surfaces, on galvanised, stainless steel and aluminium	1.6	60	78	80	0.215	+ 5°C	48 h	24 h
SikaCor® EG Phosphat 2-pack high-solid epoxy zinc phosphate primer, acc. to TL/TP-KOR-Stahlbauten, Blatt 87, suitable as welding primer	1.6	62	80	80-120	0.205 - 0.310	+ 5°C	7 h	3.5 h
SikaCor® EG Phosphat Plus 2-pack high-solid epoxy zinc phosphate primer, acc. to TL/TP-KOR-Stahlbauten, Blatt 87	1.6	62	80	80-120	0.205 - 0.310	+ 5°C	7 h	3.5 h
SikaCor® EG Phosphat Rapid 2-pack high-solid epoxy zinc phosphate primer, acc. to TL/TP-KOR-Stahlbauten, Blatt 97	1.6	57	79	80	0.225	- 10°C	4 h	1.5 h
SikaCor® Zinc R 2-pack low-solvent epoxy zinc-rich primer, acc. to TL/TP-KOR-Stahlbauten, Blatt 87, suitable as welding primer and for SLV joints	2.8	67	89	60-80	0.250 - 0.335	+ 5°C	3 h	2.5 h
SikaCor® Zinc R Rapid 2-pack low-solvent epoxy zinc-rich primer, acc. to TL/TP-KOR-Stahlbauten, Blatt 97, suitable as welding primer and for SLV joints	2.8	63	88	60-80	0.265 - 0.355	- 10°C	1h	0.5 h
SikaCor® ZP Primer 2-pack fast-curing polyurethane primer with zinc phosphate	1.5	62	78	80	0.195	0°C³)	3 h	2 h
Sika® Permacor®-2311 Rapid 2-pack low-solvent epoxy zinc-rich primer	2.5	59	85	60-80	0.254 - 0.339	- 10°C	4 h	2 h
Sika® Permacor®-2204 VHS Very low-solvent 2-pack epoxy zinc dust primer with micaceous iron oxide	2.05	77	89	80-200	0.210 - 0.525	+ 10°C	12 h	6 h
Sika Poxicolor® Primer HE NEW 2-pack low-solvent, surface-tolerant epoxy primer	1.4	67	80	80-100	0.152 - 0.190	+ 5°C	10 h	6 h
Sika Poxicolor® Rapid 2-pack fast-curing epoxy resin primer and intermediate coat with zinc phosphate for steel or galvanised steel	1.6	68	83	80-120	0.210 - 0.280	- 10°C	9 h	6 h

¹⁾ The drying times depend on the film thickness and refer to 80 - 100 μm dry film thickness ²⁾ Data based on micaceous iron oxide colours ³⁾ Accelerated with SikaCor® PUR Accelerator

Suitable intermediate and top coats															
Suitable intermediate and top coats Suitable intermediate and top coats															
		Highso	Plus	MEM	stem	and six	JHS/	Stem 23		Plus	405	Clearcoa	ColorNE	2230	Aris 1215 ECUTA
/	(0) (6)		Carrol					187				?/ _Q V	Perma	Deima	Permacu
Silv	31/ 4	cill cill	3 / 511	cil cil	3 Cil	3CC SIN	Sall SIN	3 SIN	31 51	Sall SIN	30 51	3/2/	20 / C!N	3 SIN	
									•	•				•	
•	•														
	•		•												
•	•	•													
				•	•		•	•	•	•		•		•	
			•	•	•		•	•	•	•		•		•	
				•	•	•	•	•	•	•		•		•	
			•	•	•		•	•							
				•	•	•	•	•							
				•			•		•		•			•	
													•		
									•			•		•	
				•	•		•	•	•	•	•	•		•	
				•	•				•	•	•	•		•	

TABLE 5 PRODUCT FEATURES OF OUR INTERMEDIATE COATS

	Density		ume lids	Dry film thick- ness	Theor. mat. con- sumption	Min. application tempera- ture	application until ove tempera- coating	
Intermediate coat	[kg/l]	Vol. [%]	Wt [%]	[µm]	[kg/m²]		at 10°C	at 20°C
SikaCor® EG-1 2-pack low-solvent, micaceous iron oxide epoxy intermediate coat for primed steel or directly on galvanised steel, acc. to TL/TP-KOR-Stahlbauten, Blatt 87	1.6	60	77	80-120	0.215 - 0.320	+ 5°C	10 h	6 h
SikaCor® EG-1 Plus 2-pack low-solvent, micaceous iron oxide epoxy intermediate coat for primed steel or directly on galvanised steel, acc. to TL/TP-KOR-Stahlbauten, Blatt 87	1.5	70	83	80-120	0.170 - 0.250	+ 5°C	8 h	4 h
SikaCor® EG-1 Rapid 2-pack low-solvent, micaceous iron oxide epoxy intermediate coat for primed steel or directly on galvanised steel, acc. to TL/TP-KOR-Stahlbauten, Blatt 97	1.6	56	77	80-120	0.230 - 0.350	- 10°C	5 h	3 h
SikaCor® EG-1 VHS 2-pack very high solid, micaceous iron oxide epoxy intermediate coat for primed steel or directly on galvanised steel, acc. to TL/TP-KOR-Stahlbauten, Blatt 94	1.8	78	90	80-160	0.185 - 0.370	+ 5°C	13 h	5 h
Sika® Permacor®-2215 EG VHS 2-pack very high solid, micaceous iron oxide epoxy intermediate coat	1.9	72	87	80-160	0.211 - 0.422	+ 5°C	11 h	5 h
Sika® Permacor®-2706 EG 2-pack micaceous iron oxide epoxy intermediate coat for primed steel or directly on galvanised steel	1.4	45	66	40	0.125	+ 10°C	24 h	16 h
SikaCor® ZP-1 2-pack polyurethane micaceous iron oxide intermediate coat for primed steel according to TL/TP-KOR-Stahlbauten, Blatt 87/97	1.6 1.5 ²⁾	60 63 ²⁾	77 79 ²⁾	80-120	0.215 - 0.320 0.190 - 0.290 ²⁾	O°C³)	2 h	1,5 h

¹⁾ The drying times depend on the film thickness and refer to 80 - 100 μm dry film thickness ²⁾ Data based on micaceous iron oxide colours ³⁾ Accelerated with SikaCor® PUR Accelerator

Suitable coatings systems										
Gina Cue Sina Sina Sina Sina Sina Sina Sina Sina										
•	•		•	•	•	•		•		
•	•			•	•	•		•		
	•		•	•	•	•		•		
	•			•	•	•		•		
					•	•	•	•		
		•		•	•	•		•	•	
					•	•		•		

TABLE 6

PRODUCT FEATURES OF OUR TOP COATS

Top coats	Density	Volum	e solids	Dry film thick-ness	Theor. mat. consumption
	[kg/l]	Vol. [%]	Wt [%]	[µm]	[kg/m²]
SikaCor®-6630 High Solid 1-pack oxidative drying high-build coating in RAL or DB colour shades ⁴⁾	1.4 1.5 ²⁾	62 61 ²⁾	77 77 ²⁾	80 -160	0.180 - 0.360 0.195 - 0.390 ²⁾
SikaCor®-6630 Plus 1-pack oxidative drying high-build coating in RAL or DB colour shades ⁴⁾ , acc. to TL/TP-KOR-Stahlbauten, Blatt 93	1.3 1.4 ²⁾	64 63 ²⁾	77 77 ²⁾	80 - 160	0.165 - 0.340 0.180 - 0.360 ²⁾
SikaCor® EG-4 2-pack acrylic polyurethane top coat containing micaceous iron oxide pigments (MIO) in DB colour shades ⁴⁾ , acc. to TL/TP-KOR-Stahlbauten, Blatt 87	1.4	55	70	60 - 100	0.153 - 0.256
SikaCor® EG-5 2-pack acrylic polyurethane top coat in RAL colour shades, acc. to TL/TP-KOR-Stahlbauten, Blatt 87	1.3	61	74	60 - 100	0.130 - 0.217
SikaCor® EG-120 2-pack very high solid polyurethane top coat in RAL and DB colour shades ⁴⁾ ; for the application on primers or direct to metal (steel, galvanized steel or aluminium)	1.3 1.6 ²⁾	70 70 ²⁾	80 83 ²⁾	60 - 120	0.149 - 0.223 0.183 - 0.274 ²⁾
SikaCor® EP Color 2-pack primer and top coat based on epoxy resin with anti-corrosion pigments in RAL colour shades	1.6	62	80	80	0.205
SikaCor® PUR Color NEW 2-pack primer and top coat based on polyurethane with anti-corrosion pigments, in silk-matt RAL colour shades	1.4	56	73	80 - 180	0.200 - 0.450
SikaCor® PUR Color Plus 2-pack primer and top coat based on polyurethane with anti-corrosion pigments, in silk-att RAL colour shades	1.2	66	74	80 - 180	0.144 - 0.324
SikaCor® Steel Protect VHS Rapid 1-pack synthetic resin-based primer and top coat	1.55	65	81	60 - 160	0.143 - 0.380
Sika® CorroTop NEW/EG 1-pack alkyd resin top coat with smooth, glossy surface in RAL and DB colour shades ⁴⁾	1.3	56	73	60 - 120	0.140 - 0.280 0.150 - 0.300 ²⁾
Sika® Permacor®-2230 VHS 2-pack very high solid, acrylic polyurethane top coat in RAL colour shades with high weather and colour stability	1.4	70	82	60 - 100	0.120 - 0.200
Sika® Permacor®-2330 2-pack acrylic polyurethane top coat in RAL colour shades with increased weathering and colour stability	1.3	56	69	50 - 80	0.115 - 0.185
Sika Poxicolor® Very low-solvent, micaceous iron oxide free, 2-pack primer, intermediate and top coat based on epoxy resin combination binders, acc. to TL/TP-KOR-Stahlbauten, Blatt 81	1.6	76	87	80 - 120	0.196 - 0.250

¹⁾ The drying times depend on the film thickness and refer to 80 - 100 μm dry film thickness ²⁾ Data based on micaceous iron oxide colours ³⁾ Accelerated with SikaCor® PUR Accelerator ⁴⁾ Metallic MIO colour shades acc. DB standard

Min. applica- tion tem-	Waitin betv overco	veen	Suitable primer in terms of refurbishment
perature	at 10°C	at 20°C	Suitable primer in terms of refurbishment Suitable primer in terms of refurbishment
+ 5°C	36 h	24 h	
+ 5°C	36 h	24 h	
+ 5°C	16 h 12 h ³⁾	12 h 4 h ³⁾	• •
+ 5°C	18 h 13 h ³⁾	14 h 5 h ³⁾	• •
+ 5°C	20 h	11 h	• •
+ 5°C	7 h	3,5	• •
+ 5°C	6 h - 9 h 3 h - 4 h	4 h - 6 h 2 h - 3 h	• •
+ 5°C	6 h - 9 h	4 h - 6 h	• •
+ 5°C	12 h	5 h	
+ 5°C	24 h	12 h	
+ 5°C	14 h	5 h	
+ 5°C	18 h	8 h	• •
+ 5°C	12 h	6 h	

OUR COMPETENCE

THE BUSINESS UNIT INDUSTRIAL COATINGS of Sika Deutschland GmbH develops, produces and sells high-quality coatings for corrosion and fire protection. We can look back on a long and successful story with numerous innovations.

APPLICATION AREAS

CORROSION PROTECTION

TRAFFIC CONSTRUCTION

- motorway bridge /road bridge
- railway bridge
- suspension bridge
- walkway

STEEL STRUCTURES

- port facilities
 - centers for culture and events
 - airnorts
 - railway stations

HYDRAULIC STEEL **STRUCTURES**

- waterways
- port facilities
- flood protection
- steel sheet piles

FIRE PROTECTION

FOR STEEL

- solvent-free systems
- water-based systems solvent-based systems

TANK PROTECTION

- silos and vessels
- pipeworks
- secondary containment

CHEMISTRY AND INDUSTRY

- mineral oil industry
- plants in atmospheric conditions
- refineries

POWER SUPPLY

- power stations
- pipelines
- wind energy
- mast coatings

FOR WOOD AND CONCRETE

- timber construction elements

Innovative products combined with high economic efficiency are the contribution to social responsibility as well as ecological and social awareness. The use of modern, high-quality coating materials with a low VOC content, optimum processing properties and a long durability is the claim that Sika Deutschland GmbH fulfills in a wide variety of applications areas.

GLOBAL BUT LOCAL PARTNERSHIP

WITH OVER 100 LOCAL SUBSIDIARIES and the aim to make global technology meet local expertise, Sika transfers know-how locally on a global basis to guarantee local support in selection, validation and application of our products on job sites around the world.

Find your local Sika subsidiary on **www.sika.com** and contact them for any requieres.

C / STB / HD / 02_19 / 1.00

WORLDWIDE SYSTEM SOLUTIONS FOR CONSTRUCTION AND INDUSTRY

ROOFING

CONCRETE

WATERPROOFING

CORROSION AND FIRE PROTECTION

SEALING & BONDING

FLOORING

REFURBISHMENT

INTERIOR FINISHING

INDUSTRY

BUILDING TRUST

As a subsidiary of the globally operative Sika AG, Baar/Switzerland, Sika Deutschland GmbH is one of the leading suppliers of building chemical product systems as well as sealants and adhesives for industrial manufacturing.

